The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.
نویسندگان
چکیده
MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.
منابع مشابه
The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus.
The bacterial actin homolog, MreB, forms helical cables within the cell that are required for maintenance of a rod shape. These helical structures are thought to be involved in the spatial organization of cell wall (peptidoglycan) synthesizing complexes of penicillin-binding proteins (PBPs). Here, we examined the role of the MreC cell shape protein in this process in Caulobacter crescentus. Sub...
متن کاملRodZ, a new player in bacterial cell morphogenesis
Three different laboratories have now identified a new morphogenetic factor widely conserved in bacteria. The protein, RodZ, is required for assembly of the actin cytoskeleton MreB that controls cell wall synthesis and cell shape. It is not yet understood how bacteria determine their shape. Almost all bacteria are surrounded by a giant cell wall polymer called peptidoglycan that gives shape to ...
متن کاملMreC and MreD Proteins Are Not Required for Growth of Staphylococcus aureus
The transmembrane proteins MreC and MreD are present in a wide variety of bacteria and are thought to be involved in cell shape determination. Together with the actin homologue MreB and other morphological elements, they play an essential role in the synthesis of the lateral cell wall in rod-shaped bacteria. In ovococcus, which lack MreB homologues, mreCD are also essential and have been implic...
متن کاملActin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins
Actin-like proteins MreB and Mbl are required for proper cell shape and for viability in B. subtilis and form dynamic helical filaments underneath the cell membrane. We have found that depletion of MreB and Mbl proteins leads to a rapid defect in chromosome segregation before a defect in cell shape becomes detectable. Under these conditions, the SMC chromosome segregation complex that is essent...
متن کاملDimeric structure of the cell shape protein MreC and its functional implications.
The bacterial actin homologue MreB forms helical filaments in the cytoplasm of rod-shaped bacteria where it helps maintain the shape of the cell. MreB is co-transcribed with mreC that encodes a bitopic membrane protein with a major periplasmic domain. Like MreB, MreC is localized in a helical pattern and might be involved in the spatial organization of the peptidoglycan synthesis machinery. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular microbiology
دوره 66 1 شماره
صفحات -
تاریخ انتشار 2007